Insights into Programming of Bone Development from the ALSPAC Cohort

Jon Tobias, Professor of Rheumatology, University of Bristol
Summary

- Introduction
 - Possible factors involved in skeletal programming
 - Summary of the ALSPAC cohort

- Use of ALSPAC to investigate skeletal programming
Factors Which May Play a Role the Programming of Bone Development

- Birth weight as a proxy measure for general nutrition in utero
 - Birth weight predicts bone size in young adulthood at cortical sites in men and trabecular sites in women from The Gambia. S De Bono et al 2010 Bone 46: 1316-21
Factors Which May Play a Role in the Programming of Bone Development

- Specific nutritional factors in utero
 - Maternal dietary intake of methyl donors e.g. methionine, choline and folate
Factors Which May Play a Role in the Programming of Bone Development

- Specific nutritional factors in utero
 - Maternal folate intake
 - Maternal vitamin D intake
 - Pleiotrophic effects of vitamin D on development
 - Vitamin D may regulate transcription of methyltransferase genes (Kim et al. 2009 Nature 461:1007-1012)
 - Reported associations between maternal vitamin D status and DXA of the child at age nine (MK Javid et al. 2006 Lancet 367:36-43)
Factors Which May Play a Role the Programming of Bone Development

- Other environmental factors operating in utero
 - Maternal smoking
 - Women who smoked had infants with a lower BMC and BMD (K Godfrey et al 2001 J Bone Miner Res 16: 1694-03)
Avon Longitudinal Study of Parents and Children (ALSPAC)

- Geographically based birth cohort to which pregnant women residing in Avon were recruited 1991-2.
- Approximately 14,000 women and children were enrolled.
- Information is obtained from questionnaires administered from pregnancy and throughout childhood, and from ‘hands-on’ assessment clinics.
Bone Measures in ALSPAC

Measured at clinics:

DXA scan at:
- 9 years
- 11 years
- 13 years
- 15 years
- 17 years

pQCT scan at:
- 15 years
- 17 years
Using DXA Scans to Measure Whole Body and Spinal Bone Mineral Content (BMC) and Density (BMD)
Measurements of cortical bone at the mid tibia by pQCT

Cortical BMC
Periosteal circumference
Cortical thickness
Cortical BMD
Summary

- Introduction
- Use of ALSPAC to investigate skeletal programming
 - Birth weight and bone development
 - Maternal folate and bone development
 - Maternal vitamin D and bone development
 - Maternal smoking and bone development
Is birth weight related to bone development of the child?

We examined relationships between birth weight and total body DXA (age 9) and pQCT scans (age 15) adjusting for a range of possible confounders.
Birth Weight and Total Body Bone Mass as Measured by DXA At Age Nine (N=6876)

<table>
<thead>
<tr>
<th>Model</th>
<th>Beta</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>Basic*</td>
<td>0.54</td>
<td>0.49, 0.59</td>
</tr>
<tr>
<td>Weight</td>
<td>Basic*</td>
<td>0.46</td>
<td>0.41, 0.51</td>
</tr>
<tr>
<td>BMC</td>
<td>Basic*</td>
<td>0.46</td>
<td>0.41, 0.51</td>
</tr>
</tbody>
</table>

*Gender, age at DXA, gestation
Birth Weight and Total Body Bone Mass as Measured by DXA At Age Nine (N=6876)

<table>
<thead>
<tr>
<th>Model</th>
<th>Beta</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMC Basic*</td>
<td>0.46</td>
<td>0.41, 0.51</td>
<td><0.001</td>
</tr>
<tr>
<td>BMC +parental ht & wt</td>
<td>0.24</td>
<td>0.18, 0.30</td>
<td><0.001</td>
</tr>
<tr>
<td>BMC +stress factors**</td>
<td>0.25</td>
<td>0.19, 0.31</td>
<td><0.001</td>
</tr>
<tr>
<td>BMC +ht & wt at age 9</td>
<td>-0.02</td>
<td>-0.05, 0.01</td>
<td>0.2</td>
</tr>
<tr>
<td>BMC Bone area</td>
<td>-0.22</td>
<td>-0.27, -0.16</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*Gender, age at DXA, gestation
**Maternal education, smoking in pregnancy, family adversity
Interim Conclusions (1/4)

- In minimally adjusted analyses, birth weight is positively related to total body BMC at age 9 and to cortical bone mass at age 15.

- These associations reflect shared relationships with body size, as they were lost after adjusting for parental and child height and weight.

- After adjusting for body size, birth weight was inversely related to cortical thickness and density, suggesting intrauterine nutrition per se may adversely affect on cortical bone development.
Is maternal diet related to bone development of the child?

Maternal diet, including folate intake, was assessed by food frequency questionnaire in the third trimester.

We examined associations between maternal dietary constituents and total body and spinal BMD, adjusted for total energy intake.
Maternal folate intake and spinal BMD of the child at age nine Tobias JH et al 2005, OI 16:1731

Spinal BMD according to tertile of maternal folate intake. Results show means and 95% CI (n=2540). F-test revealed significant difference between tertiles (p = 0.02).
Methylenetetrahydrofolate reductase (MTHFR)

- Associations between maternal diet and BMD of the child could reflect confounding eg via shared relationships with diet of the child.

- MTHFR is involved in folate metabolism, and mediates effects of dietary folate levels on availability of methyl groups for DNA methylation.
 - The T (minor) allele of the C677T MTHFR polymorphism is associated with decreased levels of folate and DNA methylation.

- Does MTHFR genotype of the mother affect BMD of the child independently of genotype of the child?
Spinal BMD According to MTHFR Genotype

Graphs show mean + 95% confidence intervals
Maternal MTHFR Genotype Affects Spinal BMD Independently of Child’s Genotype (1015 boys)

Graphs show mean + 95% confidence intervals
Interim Conclusions (2/4)

- Maternal folate intake is positively related to spinal BMD at age nine.

- Maternal MTHFR genotype associated with lower folate levels are negatively related to spinal BMD at age nine independently of child genotype (boys only).

- Maternal folate status may have an independent effect on bone development of the child.
Is background UVB in pregnancy related to bone development of the child?

We examined the relationship between background UVB in the third trimester of pregnancy, and whole body DXA scan results at age 9 in 6995 children.
Serum total 25-hydroxyvitamin D, measured at 36 weeks gestation in a subgroup of 355 study mothers, versus estimated background UVB in the third trimester.
Ultraviolet light in pregnancy affects bone size of the child
Maternal UVB and bone development of the child: Path analysis

- UVB
 - Height: 0.029 (0.012)
 - Height-Adjusted Bone Area: 0.045 (0.012)
 - Total Bone Area: 0.84

- UVB
 - Height: 0.55
Background UVB levels during the third trimester of pregnancy are positively related to bone size of the child, which may reflect an influence of maternal vitamin D status.

Although background UVB was also related to height, this did not entirely explain the association with bone size.

Our results are consistent with an effect of maternal UVB on periosteal (ie outwards) growth of the skeleton in childhood.
Is parental smoking during pregnancy related to bone development of the child?

Maternal and paternal smoking was assessed during pregnancy by questionnaire.

We examined the relationship between maternal and paternal smoking during pregnancy, and total body and spinal DXA results as measured in the child at age nine.
Interim Conclusions (4/4)

• Maternal smoking during pregnancy was positively associated with bone mass in girls but was not associated with bone mass in boys.

• Maternal and paternal associations were of similar sizes, with no statistical evidence for differences for any of the bone outcomes studied.

• All relationships attenuated to the null on adjustment for the child’s height and weight at the time of the DXA scan, and were driven mainly by the child’s weight.

• The relationships found are likely to be explained by familial characteristics related to childhood adiposity rather than an intrauterine effect.
Summary

- After correcting for parental and child size, general nutrition in utero as reflected by birth weight was inversely related to cortical thickness and density.
- Maternal folate intake and MTHFR genotype were both related to spinal BMD at age nine.
- Background UVB during the third trimester of pregnancy was positively related to bone size at age nine even after adjusting for height.
- In adjusted models, no relation was observed between maternal smoking during pregnancy and bone development.
Discussion

- Specific nutritional factors during pregnancy such as folate and vitamin D may influence bone development of the child, possibly reflecting effects on DNA methylation.

- Intake of folate supplements was not related to BMD measures in childhood; maternal folate and UVB were related to differing aspects of skeletal development which goes against a common pathway.

- Further studies are justified to examine the role of altered DNA methylation in utero in programming subsequent bone development.
Acknowledgements

- Colin Steer
- Adrian Sayers
- Corrie MacDonald-Wallis
- Debbie Lawlor
- George Davey-Smith
- Jean Golding
- ALSPAC subjects and clinic staff